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Abstract 

Using the statistical approach to dynamical X-ray 
diffraction, the equations for coherent and diffuse 
scattered waves in a general case of a deformed crystal 
are obtained. 

1. Introduction 

The statistical dynamical theory of a diffraction for a 
point source in Laue geometry was first developed by 
Kato (1980). This theory was modernized by Bushuev 
(1989a,b) taking the angular distribution of coherently 
• and diffusely scattered waves into account. Earlier, this 
problem was considered by Ho12~ (1982a,b) on the basis 
of the introduction of mutual coherence functions. The 
statistical dynamical theories of diffraction in one- 
dimensionally deformed crystals (Ptmegov, 1990a,b; 
Punegov, Petrakov & Tikhonov, 1990; Punegov & 
Vishnjakov, 1995) and multilayer systems (Ptmegov, 
1991, 1992, 1993) were used for interpretation of some 

experimental results (Pavlov et al., 1995; Li et al., 1995). 
The aim of this work is to develop the statistical 
dynamical theory of X-ray diffraction for a general case 
of a deformed crystal. 

We consider Bragg diffraction from a deformed crystal 
containing statistically distributed microdefects. In the 
so-called coherent approximation, the X-ray diffraction 
on a deformed crystal without statistically distributed 
defects is described by well known differential equations 
(Takagi, 1969; Taupin, 1964). As distinct from Kato's 
(1980) theory, we take the angular distribution of 
scattered intensities (case of plane waves) and also the 
variation of interplanar spacing into account. In our 
consideration, it is convenient to use the system of 
differential equations for amplitudes of the transmitted Eo 
and diffracted Eh waves in the form [see equation (2.23) 
in Afanas'ev & Kohn, 1971]: 

OEo/OS o = (izr/)OEoX o + (irc/~.)xf, C exp(ih, u)E h 

OEh/OS h = (izr/)OEh(Xo -- Oth) (1) 

+ (izr/X)xhC exp(-ih • u)E o, 

where h is the vector of diffraction, Xo,h,7, are the Fourier 
components of the susceptibility, ~. is the X-ray 
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wavelength and x = 2zr/~.. The total displacement of 
atoms from their positions in a perfect lattice can be 
written as u = (u )+  3u, where 3u is the fluctuational 
displacement caused by microdefects, (u) is the average 
atomic displacement, 

1 
C =  cos(200) 

for cr polarization 
for zr polarization, 

ot h = - 2  sin 20oW and ~o = 0 -  00 is the deviation from 
Bragg angle 00. 

2. Theory 

Let a monochromatic X-ray plane wave fall on a 
deformed crystal containing statistically distributed l 
microdefects. We shall direct the axes So and sh of an 
oblique-angled system of coordinates on the wavevector 
ko of the transmitted wave and on the wavevector kh of 
the diffracted wave. For a Cartesian system of coordi- 
nates, the axis Z is directed into the crystal and the axis X 
is directed along the surface of the crystal (see Fig. 1). 
The axis Y is directed along the surface of the crystal and 
is perpendicular to axes X and Z. 

The relationship between the oblique-angled coordi- 
nate system (So, Sh) and the Cartesian system (X, Z) is 
given by 

s o ,~ [sin(2Oo)]-l[xsin(Oo + rp) + zcos(00 + ~o)] 

sh  ~ [ s i n ( 2 0 o ) l - l [ x s i n ( O o  - ~o) - z cos(00 - ~o)] 
(2) 

x = So cos(00 - ~0) + sh cos(00 + ~o) 

z = So sin(00 - ~0) - sh sin(00 + ~o), 

where ~0 is the inciination of the lattice planes with the 
crystal surface. The boundary conditions for Bragg 
geometry are defined as follows: 

Eo[z -- 0 ¢> (~o, ~h)] -- E~i~)(x, 0), 
(3) 

Eh[z = I ¢> (30, ~h)] = 0. 

Here, E~tn)(x, 0) is the amplitude of the X-ray incident 
wave of the entrance surface. For simplification of the 
further theoretical calculations, we take E~in)(x, O) = 1. 
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We make the following transformations in expressions 
for the amplitude of  incident and transmitted waves: 

Eo(so, sh) = Eo(s o, sh) exp[- ( i rc /X)Xo(So  - sh/b)]  

Eh(so, Sh) = Eh(So, Sh) exp[--(izr/X)(Xo -- oth)(Sh -- sob)], 

( 4 )  

Sh 

LVh(So, sh)= Eh(~o, ~h) + f ds'h(#r/X)xhC 
sh (along So) 

x exp[ - ih  • u(s o, s~)] exp{(izr/Z) 

X (S o -- Jh/b)[XO(1 q- b) - both]}Eo(so, sIh). 

(7) 

where b = sin(00/sin(02) = sin(00 - ~0)/sin(00 + q)) is 
the asymmetry factor. 

The set of  Takagi equations (1) may be rewritten as 

O~o(So, Sh)/OSo 
= (izr/X)xi,  C exp(ih • u)bSh(S 0, Sh) 

× exp{( irc /X)[(Sh/b  ) - s0][X0(1 + b) - both] } 

OEh(So, Sh)/Osh 
= ( iYr / )~)X  h C e x p ( - i h  • u)/~0(s 0, sh) 

x exp{( iyr /X)(s  o - sh/b)[Xo(1 + b) - both] }. 

(5) 

It is possible to write the formal solution of the set of  the 
differential equations (5) as 

~:0(s0, sh) =/~0(~0, ~h) + 
So 

f ds~o (irc/X)xf, C 
go(along sh) 

x exp[ih, u(s~, sh) ] e x p ( ( i z r / X ) ( s h / b -  S~o) 

x [Xo(1 + b)  - ' - both]}Eh(So, Sh) (6) 

/ /  

~ ~  ~' KH 

KO 

Fig. 1. Scheme of diffraction. Ko is the wavevector of the transmitted 
wave, Ku is the wavevector of the diffracted wave, I-I is the 
diffraction vector and ~o is the inclination of the lattice planes with the 
crystal. 

We execute a statistical average of set (5) and take into 
account 

exp[th, u(s 0, sh) ] = exp(ih(u))exp(ih,  au) 

= exp(ih(u))~ 

= exp[ih(u)]((~) + 8~) 

= exp[ih(u(s 0, sh))] 

x [E(s 0, sh) + ~ ( S o ,  sh) 1. (8) 

Here, E = E(s0, sh) is the static Debye-WaUer factor. In 
our theory, this factor characterizes the distortions o f  a 
crystal lattice caused by statistically distributed defects. 
In a general case, lattice defects are non-uniformly 
distributed on a crystal volume. Therefore, in our theory, 
the static Debye-Waller factor depends on two coordi- 
nates. A statistical average is taken along an axis Y. In 
experiments, this corresponds to integration by the  
detector of  scattered intensity along an axis Y. Such an 
average differs from corresponding ones of previous 
works. 

In Kato's (1980) theory, the average is taken on a 
crystal volume. Therefore, the static factor does not 
depend on coordinates. In other works (Punegov, 1991; 
Ho12) et al., 1992), the layer-by-layer average (parallel to 
the surface of  a crystal) enables one to obtain the static 
Debye-Waller factor depending only on one coordinate 
Z. 

The amplitudes of  coherent waves /~c = (/~0 h) are O,h 
slowly varying functions in companson with the 
fluctuation of the lattice phase factor 8~. Hence, the 
correlation between -c E~, h and 3~ can be neglected. We 
obtain the following system of equations: 

OE~(so, Sh) / aSo 
= ( i z r /X)x~C e x p { ( i T r / X ) ( s h / b -  So) 

x [Xo(1 + b) - both] } exp[ih(u(So, sh))] 

x (So, SS-,Ch(so, sh) 

Sh 

+ f (ds'h (#r/X)xhC(8*(So, Sh)~**(So, S'h)) 
sh(along So) 

x exp{( in ' /X) (s  o - s'h/b)[Xo(1 + b) - both] } 

x exp{ih[-(u(s  0, ' -c , ) ]  sh))l}E~)(So s'h) 
J 
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OE~(So, Sh)/OSh 

= (iTr/~.)X h C e x p { ( i r c / X ) ( s  o -- s h / b  ) 

x [X0(1 + b) - bOth] } exp[- ih(u(s  0, sh)) ] 

? - X (So, Sh)E~(So, Sh) 

So 
+ f (ds'o (izr/x)xaC(a~*(So, Sh)a~(S'o, SD> 

,~o (along sh) 

x exp{(irc/X)(sh/b - s~)[Xo(1 + b) - bOth] } 

x exp{- ih [ - (u ( s  0, -~ ' )J.  'Sh))]}ECh(So, Sh) (9) 

The coherent amplitudes bS~),h slowly change with length 
~0 << A, where z0 is Kato's correlation length (Kato, 
1980), A = Ape~f/E is the extinction length of a crystal 
with defects and Ap~f is the extinction length of a perfect 
crystal. The amplitude of coherently scattered waves Ea, h 
can be taken from under the integrals in (9). 

We return to a set for initial amplitudes: 

OE~(so, Sh) / OSo 

-- (izr/X)XoE~(so, sh) + (irc/X)xi, CE(so, Sh) 

X E~,(s o, sh) exp[ih(u(s o, Sh))] 

_ (~.2/X2)XhXi, C2E~(so, Sh ) 

Sh 
x f (ds~ (a~(So, Sh)a**(So, S'h)) 

Sh (along So) 

× exp{ih[(u(s o, sh) ) -- (U(S o, S~))]} 

X exp{(irc/Z)[(s h -- s'h)/b][Xo(1 + b) - bOth]} ) 

OECh(So, Sh)/OSh 

= (izr/k)(Xo - Oth)gCh(So, Sh) "3V (izr/~.)X h CE(s o, Sh) 

X E~(s o, sh) exp[--ih(u(So, sh))] 

--  (yr 2/ ,~2)X~X h C2E~,(So, sh) 
So 

× f (ds~ (a**(So, sh)S*(S'o, Sh)) 
So (along sh) 

x exp{-ih[(u(s o, sh) } - (u(s~, Sh))] } 

x exp{(irr/X)(s o -- s~)[;(o(1 + b) - bOth]} ). (10) 

We introduce the correlation lengths 

~(So, Sh, 0') = 

g(So, sh, 77') = 

f d~ {/a~(So, sOa~'*(So, sh -- O) 
0(along so) 

x [ 1 -- E(s o, Sh)2] -1 } exp{ih[(u(s 0, sh) ) 

- -  (U(So, S h -- ~))]} exp(i~0' sin02) (11) 
s o --3 0 ~oo 

f d~  {(3¢*(s 0, sh)3¢(s  o - ~', sh)) 
0(along Sh) 

x [1 - E(s o, Sh)2] -1 } exp{--ih[(u(s 0, Sh)) 

-- (U(S o -- ~,Sh))]}exp( i~o '  Sin01). (12) 

These correlation lengths are functions of angular 
parameter 0' = 0c/2 sin 01)[;(o( 1 + b) -both] and coordi- 
nates s o, s h. In a Cartesian system of coordinates, the 
correlation lengths can be written 

l--z'~OO 

r~(x ,z , r / ' )=  f d~(1/sin02) 
0 

x { ( a ~ ( x , z ) a ~ * ( x -  ~Cot02, z + ~)) 

x [1 - E(x ,z )2] - l }exp{ ih[(u(x , z ) )  

- (u (x -  ~cotO2, z + se))]} exp(i~rf) (13) 

g(x,z,o ' )= f d~(l/sinO1) 
0 

x {(3dP*(x,z)•aP(x + ~ c o t O l , Z  + ~)) 

x [1 -- E ( x , z ) 2 ] - l } e x p { - i h [ ( u ( x , z ) )  

- (u(x + ~cotOl, z + ~v))]} exp(-i~v,7'). 
(14) 

The correlation lengths (13) and (14) differ in their 
integration directions. For ~l(X, z, rf), the integration is 
taken in the direction of a diffracted wave but, for 
~2(x, z, rf), the integration is taken in the direction of a 
transmitted wave. The correlation lengths (13) and (14) 
include the correlation functions 

g l ( x , z , ~ ) =  ( a ~ ( x , z ) a e ~ * ( x - ~ c o t O 2 , z + O )  (15) 

g 2 ( x , z , ~ ) =  (3~*(x , z )3~(x  + O c o t O ~ , z +  Tt)). (16) 

In a general case, the correlation functions gx and g2 
differ owing to non-uniform distribution of defects in a 
crystal. If  the defect distribution is uniform and the 
average strain field ( u ) =  0 (when angular parameter 
77' = 0), the correlation lengths (11)-(14) transform into 
Kato's correlation length to. Then the set of equations 
(10) for coherent amplitudes is given by 

OE~(s o, Sh)/Os o = (Dr/X)XoE~(so, Sh) + (Dr/X)x~C 

x E(s o, sh) exp[ih(u(s 0 , Sh))]E~(s O, Sh) 

- (~/X2)Xhx~C2Ea(so, sh) 

x ~(So, S h, r/')[1 - E(So,  Sh) 2] 

og~h(So, Sh)/OSh = (izr/X)O(o -- oth)g~(so, Sh) + (izr/X)Xh 

x CE(s o, Sh) exp[- ih(u(s  0, Sh)}] 

x E~(so, Sh) --  (yr2/~.2)X~XhC2 

x g~(s o, sh)r~(s o, s h, 71')[1 - E(s o, Sh)2]. 

(17) 

If there is no dependence on coordinate x, the set of 
equations (17) describes the X-ray diffraction from one- 
dimensionally distorted crystals (Punegov et al., 1990). 

The diffusely scattered intensity is equal to the 
difference between the total scattered intensity and the 
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coherently scattered intensity: 

Iao,h = (Eo,hE~,h) -(Eo,h)(E~,h).  (18) 

Using the well known theoretical calculation of the 
statistical dynamical difflaction theory (Kato, 1980; 
Bushuev, 1989a,b), we obtain a set of equations for 
diffusely scattered intensities. For total scattered inten- 
sifies, the system of equations can be written 

OIo(so, sh)/OSo = (E;(s o, sh)[OEo(so, sh)/OSo]) 

+ ([0E~o(So, sh)/OsolEo(s o, sh)) 
(19) 

OIh(so, Sh)/OSh = (E~(s o, sh)[OEh(so, Sh)/OSh]) 

+ ([OE~,(So, Sh)/OSh]Eh(So, sh)). 

We consider in detail the first term on the fight-hand side 
of the first equation of (19): 

(~  (So, s~)[ ~Eo (So, sh) / ~So]) 
/ 

= IE~(so, sh){(izr/Z)Eo(so, Sh)~O 

+ (irr /)Ox~C*(so,  Sh) exp[ih(u(s0, sh))]Eh(so, Sh)}) 

= (izc/X)XoIo(so, sh) + (izr/)Oxi, C 

x (E~(s o, sh)rb(s o, sh)Eh(s o, sh)) exp[ih(u(s 0, sh))]. 
(2o) 

We convert the second term in the fight part of (20): 

(E~ (s o, sh)~(s0, sh)Eh (So, Sh)) exp[ih (u(s 0 , sh)) ] 

= E(s  o, sh)(E~(so, Sh)Eh(So, Sh)) exp[ih(u(so, sh))] 

+ ([E~0 (s0, sh)3~(So, sh)]Eh(so, sh)) exp[ih(u(s0, sh))] 

+ (E~(so, sh)[3~(So, sh)Eh(So, Sh)]) exp[ih(u(So, sh))] 

= g(s  o, Sh)(E~(so, sh)Eh(so, sh)) exp[ih(u(So, Sh))] 

([E~(so, sh)3¢(So, sh)] exp[ih(u(So, sh))] + 

Sh 
× f ddh (#r/)OxhCexp[--ih" U(So, S~,)] 

Sh (along So) 

x exp ((izr/Z){[(s h -- S'h)/b][Xo(1 + b) - bc~h]} ) 

x Eo(so, S'h)) + ([8*(So, Sh)Eh(So, Sh)] 

[ ,o 
x exp[ih(u(So, Sh))] -- f ds'o(izr/X)x~C 

~o(along sh) 

x exp[ - ih  • u(s;, Sh) ] exp ( -- (irr/X){(s o -- S'o) 

x [X;(1 +b)-both]I)E~(s~o,  Sh)]). (21) 

Similar consideration of other terms in (19) allows the 
system of equations for total scattered intensities to be 
obtained: 

OIo/OS o = (irr/g)Xolo + (izr/X)xi, CE(E~Eh) exp(ih(u)) 

- (zrZ/XE)xhxi, CZIo(1 - E2)~ 

+ (~/)~2)[x~IZcZlh(1 - E2)~2 * + c.c. 

OIh/Os h = (irc/~.)(Xo -- oth)I h + (izr/)OxhCE(E~Eo) 

x exp(- t~(u))  - (n2/)fl)XhX~CZlh(1 -- E2)~2 

+ (~/)f l)[Xh[2C2Io(1 -- E2)~ * + c.c. (22) 

In (22) and the following expressions, we do not write 
down the arguments of the corresponding functions. For 
coherent scattered intensities, we find the following 
system of equations: 

OIUOs o = (izr/~.)XoI~ + (izr/)Oxj, CE exp( ih(u)  )E~*E~h 

-- (7r2/)~2)XhX~C2I~(1 -- E 2) + c.c. 

Off,/Os h = (izr/X)(Xo --orb)if, + (izr/)Ozh CE 
x exp( - ih(u) )E~*E~ 

- (zrz/)~Z)x~xhczI~2(1 - E 2) + c.c. (23) .... 

From (22) and (23), we obtain the system of equations 
for diffusely scattered intensities: 

OI~(so, sh)/Os o = { -2  Im[(zr/)QX0] 

- 2 Re[(n 2/L2)Xhxi,C2(1 - E2)~1] 

- 2 Re[(zfl/)~E)xhxi, C2EEFo]}Iff 

+ {2(zfl/Z2)1Xi, I 2 C2(1 -- E 2) Re(~)  

+ 2(n~/)~Z)lx~12C2E 2 Re(f'H)Ilff 
+ 2(n~/)~E)lx~lEC2(1 - E2) Re(~2)/~ 

alah(So, Sh)IOs h = {--2 Im[(rc/)0(X o -- Oth)] 

-- 2 Re[(n 2/X2)XhxaC2(1 - E2)~] 

- 2 Re[(:n2/jk2)XhxaC2E2Fh]}I ~ 

+ {2(~/,kE)Ixh12C2(1 - E2) Re(~l) 

+ 2(Jr2/)fl)lxhlECEE 2 Re(F0))I ff 

+ 2(n~/zE)lxhlzC2(1 -- E 2) Re(~)Ig, 

(24) 

where the correlation lengths 

ro(So, Sh, O') = 

rh(So, Sh, 0') = 

f d~ (~E;(so, Sh)SEo(so, sh -- ~))o 
0(along So) 

x exp{ih[(u(So, Sh)) -- (U(So, S h -- ~))]} 

x exp(irf~ sin 02) 

s o --.~0 ~oo 

f d*(*E~(~o, Sh)*Eh(so - g',sh)lh 
O(along Sh) 

x exp(--ih[(u(s o, sh)) - ( u ( s  o -- ~, sh))]} 

x exp(irf~ sin 01) (25) 
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are responsible for coherent scattering of incoherent 
waves on an 'average' lattice. Here, the fluctuation waves 
6Eo(s o, sh) and 8Eh(S o, sh) are normalized to the appro- 
priate diffuse intensities. 

The analysis of  correlation lengths F0, h is a separate 
problem. This problem is considered in detail by 
Bushuev (1994). It is shown that integrated Fo can be 
written as 

For coherent amplitudes, we obtain 

E~,(So, Sh) = exp{(irc/~')[XoSo + (Xo -- C~h)Sh]} 
Sh 

× f (irc/)QxhCexp[--ih(u(So, S'h))] 
sh (along So) 

× E(s o, s'h) exp(- ir fs '  h sin 02) ds~. (30) 

I" 0 = C'go(E 'go/Aper f  ) ~ "c O, Aperf.  (26) 

The coefficient c (c ~. 1) depends on kinds of functions 
4,2 and F0, h. For representation (26), the limiting 
transition can be taken as E2F0 ~ 0 when z 0 --+ 0 and 
E--+ 0. Relation (26) also shows that the efficiency of  
dynamical diffuse scattering increases in a more perfect 
crystal. 

In the kinematical limit, the equation for diffuse 
intensities is much simplified: 

OIdo(so, Sh)/OS o = {--2 Im[(rr/~.)X0]}I0 d 

OIff(So, sh)/Os h = {--2 Im[(rr/~.)(X0 -- Oth)]}/h d 

+ 2(rr2/Z2)lxh12C2(1 - E 2) Re(~)I~. 

(27) 

The set of  equations for diffuse intensities (24) together 
with the system of the equations for coherent amplitudes 
(17) completely describe dynamical diffi-action of X-ray 
beams by deformed crystals with statistically distributed 
defects. 

In the case of kinematical X-ray diffraction, the formal 
solution for diffracted waves can be given in the form 

Eh(So, Sh) = exp[(irc/)OXoSo] exp[(irc/).)(X o -- Oth)Sh] 
sh 

× f (izr/~.)xhCexp[-ih" u(s0, s~)] 
sh (along So) 

x exp(-irfs~ sin 02) ds~. (28) 

In a Cartesian system of coordinates, the solution (28) 
can be rewritten as 

l 
Eh(x, z) = exp[--(izr/X)(X0 -- cq)(z /s in 02) ] f(irc/) 0 

z 

x Xh C exp{- ih  • u[x - (z' - z) cot 02, z']} 

x exp(+irfz') dz' /sin02. (29) 

This result in a Cartesian system of coordinates is 

ECh(x, z) = exp[--(irc/~.)(Xo -- ah)(Z / sin 02) ] 
l 

× (#rxhC/)~sin02) f E [ x -  (z' - z)cotOz, z' ] 
z 

x e x p { - i h ( u [ x -  ( z ' -  z)cot02, z']) } 

× exp(+irfz') dz'. (31) 

Expression (31) agrees with the result obtained in another 
way by Ho12~ et al. (1992). 
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